- The First Generation: 1946-1958 (The Vacuum Tube Years)
A Generation refers to the state of improvement in the development of a product. This term is also used in the different advancements of computer technology. With each new generation, the circuitry has gotten smaller and more advanced than the previous generation before it. As a result of the miniaturization, speed, power, and memory of computers has proportionally increased. New discoveries are constantly being developed that affect the way we live, work and play.
2. The Second Generation: 1959-1964 (The Era of the Transistor)
The transistor computer did not last as long as the vacuum tube computer lasted, but it was no less important in the advancement of computer technology. In 1947 three scientists, John Bardeen, William Shockley, and Walter Brattain working at AT&T's Bell Labs invented what would replace the vacuum tube forever. This invention was the transistor which functions like a vacuum tube in that it can be used to relay and switch electronic signals.
3. The Third Generation: 1965-1970 (Integrated Circuits - Miniaturizing the Computer)
Transistors were a tremendous breakthrough in advancing the computer. However no one could predict that thousands even now millions of transistors (circuits) could be compacted in such a small space. The integrated circuit, or as it is sometimes referred to as semiconductor chip, packs a huge number of transistors onto a single wafer of silicon. Robert Noyce of Fairchild Corporation and Jack Kilby of Texas Instruments independently discovered the amazing attributes of integrated circuits. Placing such large numbers of transistors on a single chip vastly increased the power of a single computer and lowered its cost considerably.
Since the invention of integrated circuits, the number of transistors that can be placed on a single chip has doubled every two years, shrinking both the size and cost of computers even further and further enhancing its power. Most electronic devices today use some form of integrated circuits placed on printed circuit boards-- thin pieces of bakelite or fiberglass that have electrical connections etched onto them -- sometimes called a mother board.
4. The Fourth Generation: 1971- (The Microprocessor)
This generation can be characterized by both the jump to monolithic integrated circuits(millions of transistors put onto one integrated circuit chip) and the invention of the microprocessor (a single chip that could do all the processing of a full-scale computer). By putting millions of transistors onto one single chip more calculation and faster speeds could be reached by computers. Because electricity travels about a foot in a billionth of a second, the smaller the distance the greater the speed of computers.
However what really triggered the tremendous growth of computers and its significant impact on our lives is the invention of the microprocessor. Ted Hoff, employed by Intel (Robert Noyce's new company) invented a chip the size of a pencil eraser that could do all the computing and logic work of a computer. The microprocessor was made to be used in calculators, not computers. It led, however, to the invention of personal computers, or microcomputers.
5. Quantum Computers (Next Generation Computers)
A quantum computer is a computer that uses quantum mechanics, rather than digital logic. Early on, in the 1970's it was envisioned that computers would eventually become so small that regualr physics would be ruled out by quantum mechanics. In quantum computing the data units are known as qubits. However, it is much different from a regular bit. It can be a 0, a 1, or what is called a superposition of them, which means it can be both at the same time!
Quantum computers could one day replace silicon chips, just like the transistor once replaced the vacuum tube. But for now, the technology required to develop such a quantum computer is beyond our reach. Most research in quantum computing is still very theoretical.Liquid ICs are used.
The most advanced quantum computers have not gone beyond manipulating more than 16 Qubits, meaning that they are a far cry from practical application. However, the potential remains that quantum computers one day could perform, quickly and easily, calculations that are incredibly time-consuming on conventional computers. Several key advancements have been made in quantum computing in the last few years. Let's look at a few of the quantum computers that have been developed.
1 comment:
Thanks Jaspreet for giving me this valuable information about computers generations.
Post a Comment